Completely positive kernels: the noncommutative correspondence setting

نویسنده

  • Gregory Marx
چکیده

It is well known that a function K : Ω × Ω → L(Y) (where L(Y) is the set of all bounded linear operators on a Hilbert space Y) being (1) a positive kernel in the sense of Aronszajn (i.e. ∑N i,j=1〈K(ωi, ωj)yj , yi〉 ≥ 0 for all ω1, . . . , ωN ∈ Ω, y1, . . . , yN ∈ Y, and N = 1, 2, . . . ) is equivalent to (2) K being the reproducing kernel for a reproducing kernel Hilbert space H(K), and (3) K having a Kolmogorov decomposition K(ω, ζ) = H(ω)H(ζ)∗ for an operator-valued function H : Ω→ L(X ,Y) where X is an auxiliary Hilbert space. Recent work of the authors extended this result to the setting of free noncommutative functions (i.e. functions defined on matrices over a point set which respects direct sums and similarities) with the target set L(Y) of K replaced by L(A,L(Y)) where A is a C∗-algebra. In this talk, we discuss the next extension where the target set of K is replaced by L(A,La(E)) where A is a W ∗-algebra and La(E) is the set of adjointable operators on a Hilbert W ∗-module over a W ∗-algebra B. Various special cases of this result correspond to results of Kasparov, Murphy, and Szafraniec in the Hilbert C∗-module literature. Talk time: 07/19/2016 4:00PM— 07/19/2016 4:20PM Talk location: Cupples I Room 113 Special Session: State space methods in operator and function theory. Organized by J. Ball and S. ter Horst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dilations and Rigid Factorisations on Noncommutative L-spaces

Abstract. We study some factorisation and dilation properties of completely positive maps on noncommutative L-spaces. We show that Akcoglu’s dilation theorem for positive contractions on classical (= commutative) L-spaces has no reasonable analog in the noncommutative setting. Our study relies on non symmetric analogs of Pisier’s operator space valued noncommutative L-spaces that we investigate...

متن کامل

Lower bounds on matrix factorization ranks via noncommutative polynomial optimization

We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogues: the completely positive rank and the completely positive semidefinite rank. We study the convergence properties of o...

متن کامل

The Heat Flow of the Ccr Algebra

Let Pf(x) = −if ′(x) and Qf(x) = xf(x) be the canonical operators acting on an appropriate common dense domain in L2(R). The derivations DP (A) = i(PA−AP ) and DQ(A) = i(QA−AQ) act on the ∗-algebra A of all integral operators having smooth kernels of compact support, for example, and one may consider the noncommutative “Laplacian” L = D2 P + D 2 Q as a linear mapping of A into itself. L generat...

متن کامل

M ar 2 00 7 Operator theory on noncommutative domains

In this volume we study noncommutative domains D f ⊂ B(H) n generated by positive regular free holomorphic functions f on B(H) n , where B(H) is the algebra of all bounded linear operators on a Hilbert space H. Each such a domain has a universal model (W 1 ,. .. , Wn) of weighted shifts acting on the full Fock space with n generators. The study of D f is close related to the study of the weight...

متن کامل

The Noncommutative Hahn-banach Theorems

The Hahn-Banach theorem in its simplest form asserts that a bounded linear functional defined on a subspace of a Banach space can be extended to a linear functional defined everywhere, without increasing its norm. There is an order-theoretic version of this extension theorem (Theorem 0.1 below) that is often more useful in context. The purpose of these lecture notes is to discuss the noncommuta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016